If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-9x=180
We move all terms to the left:
2x^2-9x-(180)=0
a = 2; b = -9; c = -180;
Δ = b2-4ac
Δ = -92-4·2·(-180)
Δ = 1521
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1521}=39$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-39}{2*2}=\frac{-30}{4} =-7+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+39}{2*2}=\frac{48}{4} =12 $
| 2.3.6w=1.6w+24 | | 4x+10x=90 | | 2x+19=300 | | 2(x-4)+7=-3x+8-2 | | 3x−5=2x+14x= | | 2/3•6+2/3•n=2 | | 0.18m=1.98 | | 0.18m=1.08 | | 4/5x-10=46 | | 63+16m=351 | | 5x=1/3(6x-9) | | 15=4m–5 | | 34n-63=175 | | -0.3x^2+0.5x+6=0 | | x+131+26=180 | | 3x^2+2x-7=2x-5 | | x^2-14x-5=3 | | 11(4x+8)=88 | | x+35+64=180 | | c3=3=-7 | | 90-2.50=n | | 2b-2=20 | | x+35+64=190 | | 5/x=0.05 | | (1/2x-1/4)(1/2x+1/4)=0 | | 3(2x+1)=2x+11= | | x+34+122=180 | | x+-28=96 | | x+56+59=190 | | 4(c=6) | | x+67+90=90 | | x+7.4=49.8 |